Dark energy, a cosmological constant, and type Ia supernovae
نویسندگان
چکیده
منابع مشابه
Dark energy, a cosmological constant, and type Ia supernovae
We focus on uncertainties in supernova measurements, in particular of individual magnitudes and redshifts, to review to what extent supernovae measurements of the expansion history of the universe are likely to allow us to constrain a possibly redshift-dependent equation of state of dark energy, w(z). We focus in particular on the central question of how well one might rule out the possibility ...
متن کاملConstraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae
The property of dark energy and the physical reason for acceleration of the present universe are two of the most difficult problems in modern cosmology. The dark energy contributes about two-thirds of the critical density of the present universe from the observations of type-Ia supernova (SNe Ia) and anisotropy of cosmic microwave background (CMB).The SN Ia observations also suggest that the un...
متن کاملFitting Type Ia Supernovae with Coupled Dark Energy
We discuss the possible consistency of the recently discovered Type Ia supernovae at z > 1 with models in which dark energy is strongly coupled to a significant fraction of dark matter, and in which an (asymptotic) accelerated phase exists where dark matter and dark energy scale in the same way. Such a coupling has been suggested for a possible solution of the coincidence problem, and is also m...
متن کاملTYPE Ia SUPERNOVAE AND THE HUBBLE CONSTANT
The focus of this review is the work that has been done during the 1990s on using Type Ia supernovae (SNe Ia) to measure the Hubble constant (H0). SNe Ia are well suited for measuring H0. A straightforward maximum–light color criterion can weed out the minority of observed events that are either intrinsically subluminous or substantially extinguished by dust, leaving a majority subsample that h...
متن کاملDark Matter Ignition of Type Ia Supernovae.
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2007
ISSN: 1367-2630
DOI: 10.1088/1367-2630/9/5/141